

Smart contract security

audit report

Audit Number：202104121525

Report Query Name：coinwind-vault

Audit Project Name：coinwind-vault

Audit Project Contract Info：

Audit project file hash (SHA256) 241e3f4c28c37eed35a667191d1665188934c8740f47e0763c3789766e1ba8b9

Start Date：2021.03.05

Completion Date：2021.03.17

Overall Result：Pass

Audit Team: Beosin (Chengdu LianAn) Technology Co. Ltd.

Audit Categories and Results:

No. Categories Subitems Results

1 Coding Conventions

Compiler Version Security Pass

Deprecated Items Pass

Redundant Code Pass

SafeMath Features Pass

require/assert Usage Pass

Gas Consumption Pass

Visibility Specifiers Pass

Fallback Usage Pass

2 General Vulnerability

Integer Overflow/Underflow Pass

Reentrancy Pass

Pseudo-random Number Generator

(PRNG)
Pass

Transaction-Ordering Dependence Pass

DoS (Denial of Service) Pass

Access Control of Owner Pass

Low-level Function (call/delegatecall)

Security
Pass

Returned Value Security Pass

tx.origin Usage Pass

Replay Attack Pass

Overriding Variables Pass

3 Business Security
Business Logics Pass

Business Implementations Pass

Note: Audit results and suggestions in code comments

Disclaimer: This audit is only applied to the type of auditing specified in this report and the scope of given in

the results table. Other unknown security vulnerabilities are beyond auditing responsibility. Beosin (Chengdu

LianAn) Technology only issues this report based on the attacks or vulnerabilities that already existed or

occurred before the issuance of this report. For the emergence of new attacks or vulnerabilities that exist or

occur in the future, Beosin (Chengdu LianAn) Technology lacks the capability to judge its possible impact on

the security status of smart contracts, thus taking no responsibility for them. The security audit analysis and

other contents of this report are based solely on the documents and materials that the contract provider has

provided to Beosin (Chengdu LianAn) Technology before the issuance of this report, and the contract

provider warrants that there are no missing, tampered, deleted; if the documents and materials provided by

the contract provider are missing, tampered, deleted, concealed or reflected in a situation that is inconsistent

with the actual situation, or if the documents and materials provided are changed after the issuance of this

report, Beosin (Chengdu LianAn) Technology assumes no responsibility for the resulting loss or adverse

effects. The audit report issued by Beosin (Chengdu LianAn) Technology is based on the documents and

materials provided by the contract provider, and relies on the technology currently possessed by Beosin

(Chengdu LianAn). Due to the technical limitations of any organization, this report conducted by Beosin

(Chengdu LianAn) still has the possibility that the entire risk cannot be completely detected. Beosin

(Chengdu LianAn) disclaims any liability for the resulting losses.

The final interpretation of this statement belongs to Beosin (Chengdu LianAn).

Audit Results Explained:

Beosin (Chengdu LianAn) Technology has used several methods including Formal Verification, Static

Analysis, Typical Case Testing and Manual Review to audit three major aspects of smart contracts project

coinwind-vault, including Coding Standards, Security, and Business Logic. The coinwind-vault project

passed all audit items. The overall result is Pass. The smart contract is able to function properly.

Audit Contents:

1. Coding Conventions

Check the code style that does not conform to Solidity code style.

1.1 Compiler Version Security

 Description: Check whether the code implementation of current contract contains the exposed solidity

compiler bug.

The compiler version specified in the smart contract of this project is 0.6.12, and the contract is compiled

with this version of the compiler without any compiler warning.

 Safety Suggestion: None

 Fix Result: Ignored

 Result: Pass

1.2 Deprecated Items

 Description: Check whether the current contract has the deprecated items.

 Safety Suggestion: None

 Result: Pass

1.3 Redundant Code

 Description: Check whether the contract code has redundant codes.

 Safety Suggestion: None

 Result: Pass

1.4 SafeMath Features

 Description: Check whether the SafeMath has been used. Or prevents the integer overflow/underflow

in mathematical operation.

 Safety Suggestion: None

 Result: Pass

1.5 require/assert Usage

 Description: Check the use reasonability of 'require' and 'assert' in the contract.

 Safety Suggestion: None

 Result: Pass

1.6 Gas Consumption

 Description: Check whether the gas consumption exceeds the block gas limitation.

 Safety Suggestion: None

 Result: Pass

1.7 Visibility Specifiers

 Description: Check whether the visibility conforms to design requirement.

 Safety Suggestion: None

 Result: Pass

1.8 Fallback Usage

 Description: Check whether the Fallback function has been used correctly in the current contract.

 Safety Suggestion: None

 Result: Pass

2. General Vulnerability

Check whether the general vulnerabilities exist in the contract.

2.1 Integer Overflow/Underflow

 Description: Check whether there is an integer overflow/underflow in the contract and the calculation

result is abnormal.

 Safety Suggestion: None

 Result: Pass

2.2 Reentrancy

 Description: An issue when code can call back into your contract and change state, such as

withdrawing HT.

 Safety Suggestion: None

 Result: Pass

2.3 Pseudo-random Number Generator (PRNG)

 Description: Whether the results of random numbers can be predicted.

 Safety Suggestion: None

 Result: Pass

2.4 Transaction-Ordering Dependence

 Description: Whether the final state of the contract depends on the order of the transactions.

 Safety Suggestion: None

 Result: Pass

2.5 DoS (Denial of Service)

 Description: Whether exist DoS attack in the contract which is vulnerable because of unexpected

reason.

 Safety Suggestion: None

 Result: Pass

2.6 Access Control of Owner

 Description: Whether the owner has excessive permissions, such as malicious issue, modifying the

balance of others.

 Safety Suggestion: None

 Result: Pass

2.7 Low-level Function (call/delegatecall) Security

 Description: Check whether the usage of low-level functions like call/delegatecall have vulnerabilities.

 Safety Suggestion: None

 Result: Pass

2.8 Returned Value Security

 Description: Check whether the function checks the return value and responds to it accordingly.

 Safety Suggestion: None

 Result: Pass

2.9 tx.origin Usage

 Description: Check the use secure risk of 'tx.origin' in the contract.

 Safety Suggestion: None

 Result: Pass

2.10 Replay Attack

 Description: Check the weather the implement possibility of Replay Attack exists in the contract.

 Safety Suggestion: None

 Result: Pass

2.11 Overriding Variables

 Description: Check whether the variables have been overridden and lead to wrong code execution.

 Safety Suggestion: None

 Result: Pass

3. Business Audit

3.1 The ControllerHub Contract Audit

3.1.1 Contract owner permission management

 Description: The highest permission owner of this contract (the contract deployer by default) can call

the transferOwnership function to transfer the owner permission to the specified non-zero address; or call

the renounceOwnership function to renounce the owner permission; call the setGovernance function to

set the Governance contract address.

 Related functions: transferOwnership, renounceOwnership, setGovernance

 Result: Pass

3.1.2 Governance contract system governance

 Description: The Governance of this contract can call the relevant functions to set the key system

parameters of the contract and contract address, such as: call the setGovernance function to update the

Governance address; call the setRewardAccount function to set the contract's income address; call The

setPause function changes the pause state of the contract (after the contract is suspended, earn will not be

possible); call the inCaseTokensGetStuck function to withdraw the HRC-20 token at the specified

contract address; call the setMdexTokenAddr function to set the MDX token address; call the setVault

function to set the vault address.

 Related functions: setGovernance, setRewardAccount, setPause, inCaseTokensGetStuck,

setMdexTokenAddr, setVault

 Result: Pass

3.1.3 Deposit strategy management

 Description: The contract’s Governance address can call the contract’s addStrategy and

removeStrategy functions to add and remove deposit strategies; it can also call the setStrategyList

function to directly update the strategy list.

As shown in Figure 1, the caller of the removeStrategy function must be the Governance contract; but the

corresponding Governance contract has the corresponding function annotated(as shown in Figure 2), then

this function will not be called (Governance contract can modify the Governance of this contract to the

account address, and then the account address can call the removeStrategy function to remove strategy).

Figure 1 The source code of removeStrategy function

Figure 2 Annotated removeStrategy function

 Related functions: addStrategy, removeStrategy, setStrategyList

 Safety Suggestion: None

 Result: Pass

3.1.4 Deposit tokens

 Description: As shown in the figure below, any user can call the earn function of this contract to

deposit the specified token. This function will traverse the list of strategies, select the strategy that

supports the specified token _token, and deposit tokens in the specified strategy contract according to the

token balance of the vault contract.

Figure 3 The source code of earn function

In addition, the Governance contract can also call the govEarn function of this contract to make a

specified amount of deposit in the strategy.

Figure 4 The source code of govEarn function

 Related functions: earn, govEarn

 Safety Suggestion: None

 Result: Pass

3.1.5 Release deposit tokens

 Description: The Governance of the contract can call related functions of the contract to release the

deposit tokens.

The withdrawAll function is used to release all the deposit tokens in the current list that support the

specified token strategy in full.

Figure 5 The source code of withdrawAll function

The withdrawLp function is used to release a specified address and a specified number of tokens. The

function will traverse all strategies from back to front and select a strategy that supports the specified

token to release until the cumulative amount released reaches _amount.

Figure 6 The source code of withdrawLp function

The govWithdraw function is used to release a specified strategy, a specified address, and a specified

number of deposit tokens.

Figure 7 The source code of govWithdraw function

 Related functions: withdrawAll, withdrawLp, govWithdraw

 Safety Suggestion: None

 Result: Pass

3.1.6 Withdraw deposit rewards

 Description: Vault contract can call the withdrawPending function of this contract to withdraw

deposit rewards. This function will only be called when the vault contract is depositing or withdrawing

assets; and the debt will be updated in time after the call.

As shown in the figure below, the function will call the withdrawMDXReward function on the strategy

contract that supports the specified token to receive the deposit reward (MDX token), and then distribute

this part of the token to the user and the platform income address.

Figure 8 The source code of withdrawMDXReward function

 Related functions: withdrawPending, withdrawMDXReward

 Safety Suggestion: None

 Result: Pass

3.2 The GovernanceHub Contract Audit

3.2.1 Contract owner permission management

 Description: The highest permission owner of this contract (the contract deployer by default) can call

the transferOwnership function to transfer the owner permission to the specified non-zero address; or call

the renounceOwnership function to renounce the owner permission.

 Related functions: transferOwnership, renounceOwnership,

 Result: Pass

3.2.2 Governance permission management

 Description: The contract administrator owner can call the addGovernance function to add the

specified address as the government; call the removeGovernance function to remove the specified

address from the government list; or call the resetGovernance function to reset the government list.

In addition, the governance of this contract can operate all the business of this project. It is recommended

that the address be set as the address of the governance contract after the project goes online, and it

cannot be changed at will.

 Related functions: addGovernance, removeGovernance, resetGovernance

 Safety Suggestion: None

 Result: Pass

3.2.3 Administrator withdrawal

 Description: The contract's administrator owner can call the adminWithdraw function to withdraw

tokens. As shown in the figure below, if the target address is not this contract, the liquidityWithdraw

function on the target contract will be called (the target contract is vault); if it is this contract, the token

will be sent directly to the caller.

Figure 9 The source code of adminWithdraw function

The administrator of the contract can call the inCaseTokensGetStuck function to withdraw tokens. As

shown in the figure below, if the target address is not this contract, the inCaseTokensGetStuck function

on the target contract will be called (the target contract can be Strategy, vault, controller); if it is this

contract, the tokens will be sent directly to the caller.

Figure 10 The source code of inCaseTokensGetStuck function

 Related functions: adminWithdraw, inCaseTokensGetStuck

 Safety Suggestion: None

 Result: Pass

3.2.4 Contract governance

 Description: At present, there are two kinds of management permission in this contract: the highest

permission owner and the operation permission governance. Among them, this contract implements

multiple functions that can only be called by the owner to manage key system parameters (such as vault

address, income address, etc.) in the OwnerHub sub-contract; implements multiple functions that can

only be called by the governance in other sub-contracts to manage the business functions of the system.

Note: The removeStrategy function is commented out in the GovernmentHubController contract, which

results in the system's strategy cannot be removed.

Figure 11 Annotated removeStrategy function

 Safety Suggestion: None

 Result: Pass

3.3 The HubPool Contract Audit

3.3.1 Contract owner permission management

 Description: The highest permission owner of this contract (the contract deployer by default) can call

the transferOwnership function to transfer the owner permission to the specified non-zero address; or call

the renounceOwnership function to renounce the owner permission; call the setGovernance function to

set the Governance contract address.

 Related functions: transferOwnership, renounceOwnership, setGovernance

 Safety Suggestion: None

 Result: Pass

3.3.2 Set key system parameters

 Description: As the governance contract of this project, Governance contract can call related functions

of this contract to set contract key system parameters.

 Related functions: setLiquidityAddress, setPause, setController, setMin, setEarnLowerlimit,

setTotalAmountLimit, setProfit, setSwapMiningAddr

 Safety Suggestion: None

 Result: Pass

3.3.3 Add token pledge pool

 Description: The governance contract Governance can call the add function of this contract to add a

pledge pool. Although the developers of this function have noticed that tokens cannot be added

repeatedly, it is still recommended to limit the code to avoid mistaken operations and repeated addition of

tokens, which will affect the income of pledged users.

 Related functions: add

 Safety Suggestion: None

 Result: Pass

3.3.4 Update pledge pool data

 Description: When user deposit or withdraw token to the pledge pool by calling corresponding

function , it will call the contract's updatePool function to update the data of the pledge pool. As shown

in the figure below, the function calls the getMdxBlockReward function to receive the MDX cumulative

income of the specified pledge pool; and then calculates the users and platforms under a single token

based on the total amount of tokens in the corresponding pledge pool, the distribution proportion and the

last update data, accumulative income; and update the relevant data of the pledge pool to the latest.

Figure 12 The source code of updatePool function

 Related functions: updatePool

 Safety Suggestion: None

 Result: Pass

3.3.5 Token pledge

 Description: The user can call the deposit function to pledge a specified number of tokens; also call

the depositAll function to pledge the entire balance of tokens; call the depositWithPid function to pledge

the pledge pool with the specified id.

The first two of the above functions will eventually call the depositWithPid function. The source code is

as shown in the figure below. After checking the basic parameters, the function will call the updatePool

function to update the corresponding pledge pool data; if the corresponding user has already pledged, it

will first settle the pledge rewards; if the number of tokens pledged this time is not 0, the transfer

operation and pledge data operation update will be performed (the pledge quantity is 0, which means that

only the reward is received); then, the earn function is called to earn the excess tokens; finally update the

debt information of users and platforms.

Figure 13 The source code of depositWithPid function

The safeMdxTransfer function will update the variable values of govTotalSendProfit and

userTotalSendProfit to avoid repeated receipt of rewards; then call withdrawPending of the controller

contract to issue rewards.

Figure 14 The source code of safeMdxTransfer function

As shown in the figure below, the earn function calls the approveCtr function to approve tokens to the

controller contract; then when the amount of tokens held by this contract is greater than the minimum

earn amount of the corresponding pledge pool, the earn function of the controller contract is called to

deposit.

Figure 15 The source code of earn function

 Related functions: depositWithPid, updatePool, safeMdxTransfer, earn, approveCtr, safeMdxTransfer

 Safety Suggestion: None

 Result: Pass

3.3.6 Withdraw pledged tokens

 Description: The user can call the withdraw function to withdraw a specified number of pledged

tokens; also call the withdrawAll function to extract all the tokens pledged by the caller; call the

withdrawWithPid function to withdraw the pledged tokens of the specified pledge pool id.

The first two of the above functions mentioned will eventually call the withdrawWithPid function. The

source code is as shown in the figure below, after checking the basic parameters, the function will call

the updatePool function to update the corresponding pledge pool data; if the corresponding user has

pledged, it will first settle the pledge rewards; if the number of tokens withdrawn this time is not 0, the

corresponding token assets will be sent to the caller's address (the pledge quantity is 0, which means that

only the reward is received); then, call the earn function to earn the excess tokens; finally update user

and platform debt information.

Figure 16 The source code of withdrawWithPid function

In addition, users can also call emergencyWithdraw function for emergency withdrawal. As shown in the

figure below, this function does not issue pledge rewards, and directly refunds the full amount of pledged

tokens (this means that pledge rewards will also be cleared).

Figure 17 The source code of emergencyWithdraw function

 Related functions: withdraw, withdrawAll, withdrawWithPid, emergencyWithdraw, safeMdxTransfer

 Safety Suggestion: None

 Result: Pass

3.4 The LiquidityOpt Contract Audit

3.4.1 Contract owner permission management

 Description: The highest permission owner of this contract (the contract deployer by default) can call

the transferOwnership function to transfer the owner permission to the specified non-zero address; or call

the renounceOwnership function to renounce the owner permission.

 Related functions: transferOwnership, renounceOwnership,

 Result: Pass

3.4.2 Set key parameters of the contract

 Description: The administrator of the contract can call the setGovernance function to set the

Governance contract address; call the setHubPool function to set the HubPool address; call the setRouter

function to set the router address.

 Related functions: setGovernance, setHubPool, setRouterSafety

 Suggestion: None

 Result: Pass

3.4.3 Administrator withdraws tokens

 Description: The contract administrator owner can call the withdrawAll and withdrawToken functions

to withdraw the specified token, where the withdrawToken needs to specify the corresponding withdrawal

amount.

 Related functions: withdrawAll, withdrawToken

 Safety Suggestion: None

 Result: Pass

3.4.4 Add and remove liquidity

 Description: The Governance contract can call the liquidityDeposit function of this contract to add

liquidity. As shown in the figure below, the function will send tokens with added liquidity to the hubPool

contract; if _triggerEarn is true, the earn function of the hubPool contract needs to be called to invest.

Figure 18 The source code of liquidityDeposit function

The liquidityWithdraw function can be called by the Government contract to withdraw tokens. As shown

in the figure below, this function will call the liquidityWithdraw function of the hubPool contract to

transfer token assets to this contract.

Figure 19 The source code of liquidityWithdraw function

 Related functions: liquidityDeposit, liquidityWithdraw

 Safety Suggestion: None

 Result: Pass

3.4.5 Exchange tokens

 Description: The Governance contract can call the withdrawAndSwap function of this contract to

withdraw A token; and exchange it for B token.

Figure 20 The source code of withdrawAndSwap function

As shown in the figure below, the swapToken function will first approve the exchange amount of A

tokens to the Router contract; then, according to the input exchange type, splice the corresponding path,

and call the token exchange function of the corresponding Router contract for token exchange; finally,

the function The excess tokens will be returned to the fund pool.

Figure 21 The source code of swapToken function

 Related functions: withdrawAndSwap, liquidityWithdraw, swapToken

 Safety Suggestion: None

 Result: Pass

3.5 The StrategyMdex Contract Audit

3.5.1 Contract owner permission management

 Description: The highest permission owner of this contract (the contract deployer by default) can call

the transferOwnership function to transfer the owner permission to the specified non-zero address; or call

the renounceOwnership function to renounce the owner permission; call the setGovernance function to

set the Governance contract address.

 Related functions: transferOwnership, renounceOwnership, setGovernance

 Safety Suggestion: None

 Result: Pass

3.5.2 Set key parameters of the contract

 Description: The Governance contract can call related functions of this contract to set key parameters

of the contract.

 Related functions: setGovernance, setController, setPid, setRouterAddr, setMdexTokenAddr,

setSwapMiningAddr, setHecoPoolAddr

 Safety Suggestion: None

 Result: Pass

3.5.3 Add and remove liquidity

 Description: Any user can call the addLiquidity function to add liquidity. As shown in the figure

below, this function will call the approve function of the corresponding token contract to approve tokens

to the mdexRouterh contract; then call the addLiquidity function of the mdexRouterh contract to add the

liquidity of this contract.

Figure 22 The source code of addLiquidity function

Similarly, the Governance contract can also call the removeLiquidity function to remove the liquidity of

this contract.

Figure 23 The source code of removeLiquidity function

Among them, the addLiquidity function does not limit the caller of the function, which means that

ordinary users can also directly call this function to add liquidity to the contract; but the removal can only

be called by the Governance contract.

 Related functions: addLiquidity, removeLiquidity

 Safety Suggestion: None

 Result: Pass

3.6.4 Deposit and withdraw

 Description: The Governance contract can call the depositStake function of this contract to pledge

tokens in the designated pledge pool; it can also call the withdrawStake function to withdraw the tokens

pledged by the contract.

 Related functions: depositStak, withdrawStake

 Safety Suggestion: None

 Result: Pass

3.6.5 Withdraw liquidity assets

 Description: The Governance contract can call the withdrawAll function of this contract to withdraw

the tokens that this contract has added to the liquidity pool to the vault contract. As shown in the figure

below, the function will first call withdrawMDXReward to receive the reward of pledged LP tokens; then

withdraw the pledged LP tokens, return the LP to the popularity pool, and withdraw the corresponding

tokens; finally, send the withdrawn tokens to vault contract.

Figure 24 The source code of withdrawAll function

 Related functions: withdrawAll, withdrawMDXReward

 Safety Suggestion: None

 Result: Pass

4. Conclusion

Beosin(ChengduLianAn) conducted a detailed audit on the design and code implementation of the smart

contracts project coinwind-vault. All the issues found during the audit have been written into this audit report.

Among them, the management permission owner and governance in the project have higher control rights

over the entire project, and it is recommended to do a good job of permission control.The overall audit result

of the smart contract project coinwind-vault is Pass.

Official Website

https://lianantech.com

E-mail

vaas@lianantech.com

Twitter

https://twitter.com/Beosin_com

http://lianantech.com/

